The prediction of electrical conductivity and current conduction path of carbon fiber 3-D braided composites is challenging due to its complex microstructure. This paper presents a modeling approach for establishing the multi-scale 3-D conductive network to study the current conduction behavior of the braided composites. The real microstructures, including the random distribution and random contact of carbon fibers at the micro-scale, the spatial path of carbon fiber yarn, and the yarn contact at the meso-scale, have been considered in the model. The conductive network models are valid for the conductivity prediction of the yarn and the composites. The electric potential distribution and current conduction path inside the yarn and the composites have been obtained with the multi-scale 3-D conductive network. This work provides a modeling method with high computational efficiency and simple implementation to quickly predict and design the conductivity of 3-D braided composites.
Read full abstract