Antimicrobial peptides (AMPs) are considered to be powerful weapons in the fight against traditional antibiotic resistance due to their unique membrane-disruptive mechanism. The combination of traditional and classical hydrophobic tryptophan (W) residues and hydrophilic charged arginine (R) residues is considered as the first choice for the minimalist design of AMPs due to its potent performance in antibacterial activity. However, some W- and R-rich AMPs that are not rationally designed and contain excessive repeats of W and R residues may cause severe cytotoxicity and hemolysis. To address this issue, we designed the (WRX)n (where X = hydrophilic uncharged amino residues; n = number of repeat units) series engineered peptides with high cell selectivity by introducing hydrophilic uncharged threonine (T), serine (S), glutamine (Q) or asparagine (N) residues into the minimalist design of W- and R-rich AMPs. The results showed that the introduction of these hydrophilic uncharged amino residues, especially T residues, significantly improved the cell selectivity of the W- and R-rich engineered peptides. Among (WRX)n series engineered peptides, T6 presents a mixture structure of β-turn and α-helix. It has broad spectrum and potent antibacterial activity (no activity against probiotics), good biocompatibility, high selectivity index, strong tolerance (physiological salts, serum acid, alkali, and heat conditions), rapid and efficient time-kill kinetics, and no tendency of resistance. Studies on antibacterial mechanism show that T6 exert antibacterial activity mainly by disrupting bacterial cell membrane and inducing the accumulation of reactive oxygen species in bacterial cells. Furthermore, T6 exhibited potent antibacterial and antiinflammatory capabilities in vivo in a mouse peritonitis-sepsis model infected with Escherichia coli. In conclusion, our study confirms an effective strategy for the minimalist design of highly cell selective W- and R-rich AMPs by introducing hydrophilic uncharged T residues, which may trigger widespread attention to hydrophilic uncharged amino acid residues, including T residues, and provide new insights into the design of peptide-based antibacterial biomaterials. Statement of significanceWe have introduced hydrophilic uncharged T, S, Q or N residues into the minimalist design of W- and R-rich engineered peptides and found that the introduction of these hydrophilic uncharged amino residues, especially the T residues, can significantly improve the cell selectivity of W- and R-rich engineered peptides. The target compound T6 showed potent antibacterial activity, high cell selectivity, strong tolerance, good in vivo efficacy and killed bacteria through multiple mechanisms mainly membrane-disruptive. These findings may spark widespread interest in hydrophilic uncharged amino acid residues, and provide new insights into the design of peptide-based antimicrobial biomaterials.
Read full abstract