In recent decades, the food system has been faced with the significant problem of increasing food waste. Therefore, the feed industry, supported by scientific research, is attempting to valorise the use of discarded biomass as co-products for the livestock sector, in line with EU objectives. In parallel, the search for functional products that can ensure animal health and performances is a common fundamental goal for both animal husbandry and feeding. In this context, camelina cake (CAMC), cardoon cake (CC) and cardoon meal (CM), due valuable nutritional profile, represent prospective alternatives. Therefore, the aim of this work was to investigate the antioxidant activity of CAMC, CC and CM following in vitro digestion using 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), Ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Total phenolic content (TPC) and angiotensin converting enzyme (ACE) inhibitory activity, actively involved in modulating antioxidant properties, were also studied. Further, a peptidomic analysis was adopted to substantiate the presence of bioactive peptides after in vitro digestion. The results obtained confirmed an interesting nutritional profile of CAMC, CC and CM and relevant antioxidant and ACE inhibitory activities. In particular, considering antioxidant profile, CM and CC revealed a significantly higher (10969.80 ± 18.93 mg TE/100 g and 10451.40 ± 149.17 mg TE/100 g, respectively; p < 0.05) ABTS value than CAMC (9511.18 ± 315.29 mg TE/100 g); a trend also confirmed with the FRAP assay (306.74 ± 5.68 mg FeSO4/100 g; 272.84 ± 11.02 mg FeSO4/100 g; 103.84 ± 3.27 mg FeSO4/100 g, for CC, CM and CAMC, respectively). Similar results were obtained for TPC, demonstrating the involvement of phenols in modulating antioxidant activity. Finally, CAMC was found to have a higher ACE inhibitory activity (40.34 ± 10.11%) than the other matrices. Furthermore, potentially bioactive peptides associated with ACE inhibitory, anti-hypertensive, anti-cancer, antimicrobial, antiviral, antithrombotic, DPP-IV inhibitory and PEP-inhibitory activities were identified in CAMC. This profile was broader than that of CC and CM. The presence of such peptides corroborates the antioxidant and ACE profile of the sample. Although the data obtained report the important antioxidant profile of CAMC, CC, and CM and support their possible use, future investigations, particularly in vivo trials will be critical to evaluate and further investigate their effects on the health and performance of farm animals.
Read full abstract