A new type of quiver theories, denoted twin quivers, was recently introduced for studying 5d SCFTs engineered by webs of 5-branes ending on 7-branes. Twin quivers provide an alternative perspective on various aspects of such webs, including Hanany-Witten moves and the s-rule. More ambitiously, they can be regarded as a first step towards the construction of combinatorial objects, generalizing brane tilings, encoding the corresponding BPS quivers. This paper continues the investigation of twin quivers, focusing on their non-uniqueness, which stems from the multiplicity of toric phases for a given toric Calabi-Yau 3-fold. We find that the different twin quivers are necessary for describing what we call quiver tails, which in turn correspond to certain sub-configurations in the webs. More generally, the multiplicity of twin quivers captures the roots of the Higgs branch in the extended Coulomb branch of 5d theories.