Global urbanization has caused enormous challenges that seriously threaten ecological security and the food system. Thus, there is a need for finding an optimal solution for the eco-efficiency of cultivated land use (ECLU) that can promote the development of new-type urbanization, while ensuring the sustainable utilization of limited cultivated-land resources. The quantitative system of multi-scale ECLU used in existing studies is inadequate; it is necessary to establish a measurement system from the perspective of geographical spatial relationship that uses evaluation as a key basis for management. In this study, we considered the Changchun Metropolitan Area and a representative urban–rural transition area as the target regions and customized new ECLU evaluation systems for different scales. The super slack-based measure and gravity and social network analyses methods were applied to evaluate the ECLU and explore the structural characteristics of its spatial association network. The average ECLU value for the Changchun Metropolitan Area was 0.974; the results indicated that most of the study area was eco-efficient. The value of ECLU for the urban–rural transition area varied from 0.022 to 1.323; thus, the highly efficient cultivated land was mainly distributed around the urban built-up area. The spatial association network of ECLU revealed that the overall spatial correlations were relatively weak, with a significant “bipolar” division of ECLU; furthermore, the network hierarchy and stability needed improvement. Moreover, we noted distant attraction capacity and siphoning effects outside regional boundaries. In the Changchun Metropolitan Area, it manifested as a monocentric radiation, with Changchun City as the center. In the urban–rural transition area, the cultivated land in proximity to the newly built urban area was more likely to experience spatial spillover. These findings have important implications for strengthening land-use management and advancing sustainable agricultural development for new-type urbanization. Our study can be used by policymakers and stakeholders to design sustainable urban cities, while improving land-use management and optimizing resource use.
Read full abstract