Abstract Extremely-low-mass white dwarfs (ELM WDs) with non-degenerate companions are believed to originate from solar-type main-sequence binaries undergoing stable Roche lobe overflow mass transfer when the ELM WD progenitor is at (or just past) the termination of the main-sequence. This implies that the orbital period of the binary at the onset of the first mass transfer phase must have been ≲ 3 − 5 d. This prediction in turn suggests that most of these binaries should have tertiary companions since ≈90 per cent of solar-type main-sequence binaries in that period range are inner binaries of hierarchical triples. Until recently, only precursors of this type of binaries have been observed in the form of EL CVn binaries, which are also known for having tertiary companions. Here, we present high-angular-resolution images of TYC 6992-827-1, an ELM WD with a sub-giant (SG) companion, confirming the presence of a tertiary companion. Furthermore, we show that TYC 6992-827-1, along with its sibling TYC 8394-1331-1 (whose triple companion was detected via radial velocity variations), are in fact descendants of EL CVn binaries. Both TYC 6992-827-1 and TYC 8394-1331-1 will evolve through a common envelope phase, which depending on the ejection efficiency of the envelope, might lead to a single WD or a tight double WD binary, which would likely merge into a WD within a few Gyr due to gravitational wave emission. The former triple configuration will be reduced to a wide binary composed of a WD (the merger product) and the current tertiary companion.