In the realm of artificial intelligence, simultaneous multi-task learning is crucial, particularly for dense scene understanding. To address this, we introduce HirMTL, a novel hierarchical multi-task learning framework designed to enhance dense scene analysis. HirMTL is adept at facilitating interaction at the scale level, ensuring task-adaptive multi-scale feature fusion, and fostering task-level feature interchange. It leverages the inherent correlations between tasks to create a synergistic learning environment. Initially, HirMTL enables concurrent sharing and fine-tuning of features at the single-scale level. This is further extended by the Task-Adaptive Fusion module (TAF), which intelligently blends features across scales, specifically attuned to each task’s unique requirements. Complementing this, the Asymmetric Information Comparison Module (AICM) skillfully differentiates and processes both shared and unique features, significantly refining task-specific performance with enhanced accuracy. Our extensive experiments on various dense prediction tasks validate HirMTL’s exceptional capabilities, showcasing its superiority over existing multi-task learning models and underscoring the benefits of its hierarchical approach.
Read full abstract