α-Hydroxy ketones are a class of vital organic skeletons that generally exist in a variety of natural products and high-value chemicals. However, the traditional synthetic route for their production involves toxic Hg salts and corrosive H2SO4 as catalysts, resulting in harsh conditions and the undesired side reaction of Meyer-Schuster rearrangement. In this study, CO2-promoted hydration of propargylic alcohols was achieved for the synthesis of various α-hydroxy ketones. Notably, this process was catalyzed using an environmentally friendly and cost-effective biomass-based ionic liquids/CuCl system, which effectively eliminated the side reaction. The ionic liquids utilized in this system are derived from natural biomass materials, which exhibited recyclability and catalytic activity under 1 bar of CO2 pressure without volatile organic solvents or additives. Evaluation of the green metrics revealed the superiority of this CuCl/ionic liquid system in terms of environmental sustainability. Further mechanistic investigation attributed the excellent performance to the ionic liquid component, which exhibited multifunctionality in activating substrates, CO2 and the Cu component.
Read full abstract