A multi-generational experiment (F1-F4) was conducted for a marine copepod Tigriopus japonicus to investigate its physiological and molecular responses to mercury (Hg) pollution and/or its combination with ocean acidification (OA) plus ocean warming (OW). The projected future scenario, i.e., OA plus OW (AW) significantly increased methylmercury accumulation in copepods by 1.14 times, despite insignificant change for total Hg bioaccumulation. Transcriptomic analysis indicated that copepods initiated several detoxification defense processes, including reactive oxygen species metabolic process, glutathione metabolism, and protein refolding, in response to increased Hg toxicity under combined exposure of AW and Hg; meanwhile, inhibited energy metabolism was observed in this case, linking to reduced number of nauplii/clutch but accelerated development in copepods probably due to an energetic trade-off. Increased Hg toxicity due to AW could also be ascribed to the impairment in immune defense (e.g., lysosome and vitamin metabolism) and reproduction-related processes (e.g., growth factor activity). Collectively, this study reveals the multi-generational response mechanism of copepods to Hg pollution under global change, emphasizing an exacerbated adverse effect of Hg, and it provides a scientific basis for an accurate understanding of the potential impact of Hg pollution on marine ecosystems.
Read full abstract