The aim of this study was to evaluate the efficiency of Costus speciosus (Koen ex. Retz.) Sm. in the degradation of crude oil and reduction of mercury (Hg) from the contaminated soil in pot experiments in the net house for 180days. C. speciosus was transplanted in soil containing 19150mgkg-1 crude oil and 3.2mgkg-1 Hg. The study includes the evaluation of plant biomass, height, root length, total petroleum hydrocarbon (TPH) degradation, and Hg reduction in soil, TPH, and Hg accumulation in plants grown in fertilized and unfertilized pots, chlorophyll production, and rhizospheric most probable number (MPN) at 60-day interval. The average biomass production and heights of C. speciosus in contaminated treatments were significantly (p < 0.05) lower compared to the unvegetated control. Plants grown in contaminated soil showed relatively reduced root surface area compared to the uncontaminated treatments. TPH degradation in planted fertilized, unplanted, and planted unfertilized pot was 63%, 0.8%, and 38%, respectively. However, compared to unvegetated treatments, TPH degradation was significantly higher (p < 0.05) in vegetated treatments. A comparison of fertilized and unfertilized soils showed that TPH accumulation in plant roots and shoots was relatively higher in fertilized soils. Hg degradation in soil was significantly (p < 0.05) more in planted treatment compared to unplanted treatments. The fertilized soil showed relatively more Hg degradation in soil and its accumulation in roots and shoots of plants in comparison to unfertilized soil. MPN in treatments with plants was significantly greater (p < 0.05) than without plants. The plant's ability to produce biomass, chlorophyll, break down crude oil, reduce Hg levels in soil, and accumulate TPH and Hg in roots and shoots of the plant all point to the possibility of using this plant to remove TPH and Hg from soil.