Abstract The four classical, biomolecular force fields designed to study hexopyranose-based carbohydrates (GROMOS 56a6CARBO/56a6CARBO_R, GROMOS 53a6GLYC, CHARMM and GLYCAM06) have been tested in the context of ring-inversion properties. These properties were evaluated for both unfunctionalized monomers of all hexopyranoses of the d series and for residues in a chain composed of uniform units connected by α(1→4) and β(1→4) glycosidic linkages. The results indicate that the tested force fields differ in their predictions of the ring-inversion properties of both monomers and residues in a chain. The comparison with the available experimental data and with the semi-empirical Angyal scheme reveals that, at the level of monomers, GROMOS 56a6CARBO, GROMOS 53a6GLYC and CHARMM correctly reproduce the ring-inversion free energies. However, due to the lack of analogous reference data we cannot state which force field is more or less accurate in the context of ring distortion of residues in a chain. Therefore, the use of ab initio potentials is recommended in the prospective, quantitative studies on the related subject.