Non-free radical photocatalysis with metal oxide catalysts is an important advanced oxidation process that enables the removal of various emerging environmental pollutants, such as tetracycline. Here, four hexagonal La2O3 photocatalysts with different densities of oxygen vacancy and crystalline features are synthesized and then further treated by ball milling. Ball milling of these La2O3 photocatalysts is found to increase the amount of oxygen vacancies on their surfaces and thereby the amount of 1O2 species produced by them. The photocatalytic degradation of TC by these La2O3 photocatalysts depends on the oxygen vacancies present on them. Furthermore, the ones with a strong (101) diffraction peak remove tetracycline from water systems largely with 1O2 and •OH species, whereas those with a weak (101) diffraction peak do so mainly via 1O2 and direct electron transfer (DET) process. Their overall catalytic properties are also studied by density functional theory calculations. Moreover, the organic products produced from tetracycline by La2O3 photocatalysts containing a strong (101) diffraction peak are found to be less toxic than those produced by La2O3 photocatalysts containing a weak (101) diffraction peak. This study also provides convincing evidence that the structures of La2O3 determine the species that is produced by it and that end up mediating photocatalytic reaction pathways (i.e., free radical versus non-free radical) to degrade an emerging environment pollutant.
Read full abstract