The natural quinoa protein isolate (QPI) was largely reflected in the nanoparticle form at pH 7.0 (∼401 nm), and the ultrasound at 20 min progressively improved the contact angle (wettability) and surface hydrophobicity of the nanoparticles. Ultrasound process also modified the type of intraparticle interaction, and the internal forces of sonicated particles were largely maintained by both disulfide bonds and hydrophobic interaction forces. In emulsion system, the ultrasound progressively increased the emulsification efficiency of the QPI nanoparticles, particularly at high protein concentration ( c > 1%, w/ v) and higher emulsion stability against coalescence. As compared with the natural QPI-stabilized emulsions, the 20 min sonicated emulsions exhibited higher packing and adsorption at the protein interface. The microstructure of emulsions that occurs is bridging flocculation of droplets at low c (≤1%, w/ v), while the amount of protein particles could be high enough to cover the droplet surface at high c ( >1%, w/ v) with hexagonal array model arrangement. Thus these results illustrated that both natural and sonicated QPI nanoparticles could be performed as effective food-grade stabilizer for Pickering emulsion; however, the sonicated QPI nanoparticles exhibited much better emulsifying and interfacial properties.
Read full abstract