Recent studies have suggested that ABC transporters are the main receptors of Cry toxins. However, the receptors of many Cry toxins have not been identified. In this study, we used a heterologous cell expression system to identify Bombyx mori ABC transporter subfamily C members (BmABCCs) that function as receptors for five Cry toxins active in Lepidopteran insects: Cry1Aa, Cry1Ca, Cry1Da, Cry8Ca, and Cry9Aa. All five Cry toxins can use multiple ABCCs as low-efficiency receptors, which induce cytotoxicity only at high concentrations. Surface plasmon resonance analysis revealed that the KD values between the toxins and BmABCC1 and BmABCC4 were 10-5 to 10-9 M, suggesting binding affinities 8- to 10,000-fold lower than those between Cry1Aa and BmABCC2, which are susceptibility-determining receptors for Cry1Aa. Bioassays in BmABCC-knockout silkworm strains showed that these low-efficiency receptors are not involved in sensitivity to Cry toxins. The findings suggest that each family of Cry toxins uses multiple BmABCCs as low-efficiency receptors in the insect midgut based on the promiscuous binding of their receptor-binding regions. Each Cry toxin seems to have evolved to utilize one or several ABC transporters as susceptibility-determining receptors.