Dynamic processes involving biomolecules are essential for the function of the cell. Here, we introduce an integrative method for computing models of these processes based on multiple heterogeneous sources of information, including time-resolved experimental data and physical models of dynamic processes. We first compute integrative structure models at fixed time points and then optimally select and connect these snapshots into a series of trajectories that optimize the likelihood of both the snapshots and transitions between them. The method is demonstrated by application to the assembly process of the human Nuclear Pore Complex in the context of the reforming nuclear envelope during mitotic cell division, based on live-cell correlated electron tomography, bulk fluorescence correlation spectroscopy-calibrated quantitative live imaging, and a structural model of the fully-assembled Nuclear Pore Complex. Modeling of the assembly process improves the model precision over static integrative structure modeling alone. The method is applicable to a wide range of time-dependent systems in cell biology, and is available to the broader scientific community through an implementation in the open source Integrative Modeling Platform software.
Read full abstract