نتيجة للتطورات الأخيرة في أبحاث الطرق السريعة بالإضافة إلى زيادة استخدام المركبات، كان هناك اهتمام كبير بنظام النقل الذكي الأكثر حداثة وفعالية ودقة (ITS) في مجال رؤية الكمبيوتر أو معالجة الصور الرقمية، يلعب تحديد كائنات معينة في صورة دورًا مهمًا في إنشاء صورة شاملة. هناك تحدٍ مرتبط بالتعرف على لوحة ترخيص السيارة (VLPR) بسبب الاختلاف في وجهة النظر، والتنسيقات المتعددة، وظروف الإضاءة غير الموحدة في وقت الحصول على الصورة والشكل واللون، بالإضافة إلى الصعوبات مثل ضعف دقة الصورة ، الصورة الباهتة ، الإضاءة السيئة، التباين المنخفض، يجب التغلب عليها. اقترحت هذه الورقة نموذجًا باستخدام تعديل الذاكرة الترابطية ثنائية الاتجاه (MBAM)، وهي نوع واحد من الذاكرة الترابطية غير المتجانسة، وتعمل MBAM على مرحلتين)مرحلتي التعلم والتقارب) للتعرف على اللوحة، ويمكن لهذا النموذج المقترح التغلب على تلك الصعوبات بسبب قدرة الذاكرة الترابطية لـ MBAM على قبول الضوضاء وتمييز الصور المشوهة، وكذلك سرعة عملية الحساب نظرًا لصغر حجم الشبكة. نتيجة دقة تحديد منطقة اللوحة هي 99.6٪، ودقة تجزئة الأحرف 98٪، والدقة المحققة للتعرف على الأحرف هي100 ٪ في ظروف مختلفة.
Read full abstract