UDC 514 As a natural generalization of slant submanifolds [B.-Y. Chen, <em>Bull. Austral. Math. Soc.,</em> <strong>41</strong>, No. 1, 135 (1990)], slant submersions [B. Şahin, <em>Bull. Math. Soc. Sci. Math. Roumanie (N.S.),</em> <strong>54</strong>, No. 102, 93 (2011)], slant Riemannian maps [B. Şahin, <em>Quaestion. Math.,</em> <strong>36</strong>, No. 3, 449 (2013) and Int. J. <em>Geom. Methods Mod. Phys.,</em> <strong>10</strong>, Article 1250080 (2013)], pointwise slant submanifolds [B.-Y. Chen, O. J. Garay, <em>Turk. J. Math.,</em> <strong>36</strong>, 630 (2012)], pointwise slant submersions [J. W. Lee, B. Şahin, <em>Bull. Korean Math. Soc.,</em> <strong>51</strong>, No. 4, 1115 (2014)], pointwise slant Riemannian maps [Y. Gündüzalp, M. A. Akyol, <em>J. Geom. and Phys.,</em> <strong>179</strong>, Article 104589 (2022)], semi-slant submanifolds [N. Papaghiuc, <em>Ann. Ştiinƫ. Univ. Al. I. Cuza Iaṣi. Mat. (N.S.),</em> <strong>40</strong>, 55 (1994)], semi-slant submersions [K.-S. Park, R. Prasad, <em>Bull. Korean Math. Soc.,</em> <strong>50</strong>, No. 3, Article 951962 (2013)], and semi-slant Riemannian maps [K.-S. Park, B. Şahin, <em>Czechoslovak Math. J.,</em> <strong>64</strong>, No. 4, 1045 (2014)], we introduce a new class of Riemannian maps, which are called {\it pointwise semi-slant Riemannian maps,} from Riemannian manifolds to almost Hermitian manifolds. We first give some examples, present a characterization, and obtain the geometry of foliations in terms of the distributions involved in the definition of these maps. We also establish necessary and sufficient conditions for pointwise semi-slant Riemannian maps to be totally geodesic and harmonic, respectively. Finally, we determine the Casorati curvatures for pointwise semi-slant Riemannian maps in the complex space form.
Read full abstract