In this paper, we consider the initial boundary value problem of nonlinear evolution equation with hereditary memory, variable density, and external force term \t\t\t{|ut|ρutt−αΔu−Δutt+∫−∞tμ(t−s)Δu(s)ds−γΔut=f(u),(x,t)∈Ω×R+,u(x,t)=0,(x,t)∈∂Ω×R+,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω.\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document} $$\\begin{aligned} \\textstyle\\begin{cases} \\vert u_{t} \\vert ^{\\rho }u_{tt}-\\alpha \\Delta u-\\Delta u_{tt}+\\int_{-\\infty } ^{t}\\mu (t-s)\\Delta u(s)\\,ds-\\gamma \\Delta u_{t}=f(u), \\\\ \\quad (x,t)\\in \\varOmega \\times \\mathbb{R}^{+},\\\\ u(x,t)=0,\\quad (x,t)\\in \\partial \\varOmega \\times \\mathbb{R}^{+},\\\\ u(x,0)=u_{0}(x),\\qquad u_{t}(x,0)=u_{1}(x),\\quad x\\in \\varOmega. \\end{cases}\\displaystyle \\end{aligned}$$ \\end{document} Under suitable assumptions, we prove the existence of a global solution by means of the Galerkin method, establish the exponential stability result by using only one simple auxiliary functional, and give the polynomial stability result.
Read full abstract