Listeriosis is a dangerous zoonosis caused by bacteria of the genus Listeria, with Listeria monocytogenes (LM) being the most pathogenic species. Listeria monocytogenes has been detected in various animal species and in humans, and its ability to evolve from an environmental saprophyte to a powerful intracellular pathogen is driven by the invasion mechanisms and virulence factors that enable cell invasion, replication and cell-to-cell spread. Key regulatory systems, including positive regulatory factor A (PrfA) and the stress-responsive sigma factor σB, control the expression of virulence genes and facilitate invasion of host cells. Listeriosis poses a significant threat to cattle, sheep and goat herds, leading to abortions, septicemia and meningoencephalitis, and ruminants are important reservoirs for Listeria, facilitating transmission to humans. Other Listeria species such as Listeria ivanovii and Listeria innocua can also cause disease in ruminants. Resilience of LM in food processing environments makes it an important foodborne pathogen that is frequently transmitted through contaminated meat and dairy products, with contamination often occurring along the food production chain. In humans, listeriosis primarily affects immunocompromised individuals, pregnant women and the elderly and leads to severe conditions, such as meningitis, septicemia and spontaneous abortion. Possible treatment requires antibiotics that penetrate the blood-brain barrier. Despite the relatively low antimicrobial resistance, multidrug-resistant LM strains have been detected in animals, food and the environment. Controlling and monitoring the disease at the herd level, along with adopting a One Health approach, are crucial to protect human and animal health and to minimize the potential negative impacts on the environment.