Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent disease with limited treatment options. The aim of this study was to evaluate the preventive effects of a sodium-glucose co-transporter (SGLT)-2 inhibitor, empagliflozin, on a dietary mouse model of MASLD. In total, 24 C57BL/6J mice of both sexes were randomly allocated to three groups, as follows: the fast food diet (FFD) group (eight mice, receiving a high-fat, high-cholesterol, high-fructose diet, FFD), the EMPA group (eight mice, fed a FFD with 10mg/kg/d empagliflozin), and the chow diet (eight mice, CD) group. The mice were weighed and blood samples were drawn every 4weeks; after 25weeks the mice were euthanized, at which point liver tissues were histologically evaluated. After 25weeks, there was no significant difference in body weight between the three groups, whereas liver-to-body weight ratio was greater in the EMPA compared to the CD group (p = 0.002). Hepatic fibrosis was marginally different between the three groups (p = 0.045). Fibrosis stage 1 was present in five mice on FFD (62.5%), in one mouse on EMPA (12.5%), and in one mouse on CD (12.5%). Lipogenic, inflammatory, and fibrogenic genes did not differ between the EMPA and FFD groups. Interestingly, mRNA encoding for SGLT-1 and SGLT-2 was detected in the mouse livers. Empagliflozin treatment in mice on a FFD did not result in any significant effects on morphological, biochemical, or histological features or on expression of hepatic genes associated with MASLD compared to those fed a FFD without empagliflozin. The observed effects on mild hepatic fibrosis warrant validation, possibly via studies of longer duration.
Read full abstract