BackgroundForests are invaluable resources, and fire is a natural process that is considered an integral part of the forest ecosystem. Although fire offers several ecological benefits, its frequent occurrence in different parts of the world has raised concerns in the recent past. Covering millions of hectares of forest land, these fire incidents have resulted in the loss of human lives, wild habitats, civil infrastructure, and severe damage to the environment. Around 90% of wildland fires have been caused by humans intentionally or unintentionally. Early detection of fire close to human settlements and wildlife centuries can help mitigate fire hazards. Numerous artificial intelligence-based solutions have been proposed in the past decade that prioritize the detection of fire smoke, as it can be caught through remote sensing and provide an early sign of wildland fire. However, most of these methods are either computationally intensive or suffer from a high false alarm rate. In this paper, a lightweight deep neural network model is proposed for fire smoke detection in images captured by satellites or other remote sensing sources.ResultsWith only 0.6 million parameters and 0.4 billion floating point operations per second, the hybrid network of convolutional and vision transformer blocks efficiently detects smoke in normal and foggy environmental conditions. It outperforms seven state-of-the-art methods on four datasets, including a self-collected dataset from the “Moderate Resolution Imaging Spectroradiometer” satellite imagery. The model achieves an accuracy of more than 99% on three datasets and 93.90% on the fourth dataset. The t-distributed stochastic neighbor embedding of extracted features by the proposed model demonstrates its superior feature learning capabilities. It is remarkable that even a tiny occurrence of smoke covering just 2% of the satellite image area is efficiently detected by the model.ConclusionsWith low memory and computational demands, the proposed model works exceedingly well, making it suitable for deployment in resource constrained devices for forest surveillance and early fire smoke detection.
Read full abstract