The evaporation and burning characteristics of isolated heavy fuel oil (HFO) droplets are experimentally studied at conditions representative of practical applications, producing novel, detailed results on the effect of oxygen concentration. Also, and for the first time for HFO, the temporal evolution of the flame stand-off ratio (based on CH* emission) and the cenosphere burning size are presented along with the droplet size histories. The effect of ambient oxygen concentration is first analyzed qualitatively, identifying different sub-stages. Later, a quantitative analysis is presented in terms of ignition delay time, micro-explosion regimes, shell swelling ratio, cenosphere size and several time metrics. The results show that, as ambient oxygen changes, the liquid and solid stages show marked differences not only in terms of time scales but also in the transitions of burning regimes. Cenospheres generated in oxygen-free conditions are found to be ∼1.4 times larger than those in droplet combustion. Although similar in size, the solid-to-liquid consumption time ratio in 5% O2 is found to be significantly longer, about twice than for the 10% O2 ambient. The characterization of these differences is thought to be relevant not only for oil flames but also for the promising future of heavy oil gasification applications.
Read full abstract