Sustainable poly (lactic acid) (PLA) with excellent strength, toughness, heat resistance, transparency, and biodegradability was achieved by uniaxial pre-stretching at 70 °C. The effect of pre-stretched ratio (PSR) on the microstructure and properties of the PLA was investigated. The undrawn PLA was brittle. However, after pre-stretching, the elongation at break was increased significantly. The maximum value of 161.2 % was obtained at pre-stretching ratio (PSR) of 1.0. With the increase of PSR, the modulus and strength were improved obviously (from 1601 MPa and 60.2 MPa for undrawn PLA to 2932 MPa and 106.3 MPa for the ps-PLA at PSR =3.0). Meanwhile, the heat resistance of PLA was improved obviously with the increase of PSR. For the ps-PLA3.0, there were almost no deformation and shrink at 140 °C. Interestingly, after pre-stretching, the PLA still maintained the good transparency and biodegradability. The brittleness for undrawn PLA was attributed to the network structure of cohesional entanglements. After pre-stretching, the destruction of the network structure and formation of the orientation, mesophase and oriented nanosized crystalline phase lead to the increased the toughness, strength and heat resistance without sacrificing the transparency and biodegradability. This work provides a significant guidance for the fabrication of PLA material with excellent comprehensive performance including strength, toughness, heat resistance, transparency, and biodegradability.
Read full abstract