Paraprobiotics, known as non-viable or ghost probiotics, have attracted attention for their benefits over live microbial cells. This study was designed to investigate the paraprobiotic effects of heat-killed Bacillus coagulans on the white leg shrimp Litopenaeus vannamei. The paraprobiotic formulation was prepared in three different concentrations including B. coagulans 1 (107 cells g-1 diet), B. coagulans 2 (108 cells g-1 diet), and B. coagulans 3 (109 cells g-1 diet) through heat inactivation method. Preliminary toxicity assessments revealed that post-larvae shrimps (mean weight ± SE: 0.025 ± 0.007g) treated with B. coagulans 1, 2 and 3 paraprobiotic formulations exhibited no mortality, confirming the non-toxic nature of the formulated diet. In a 90-day feeding trial involving juvenile shrimps (mean weight ± SE: 0.64 ± 0.05g), growth parameters and feed conversion ratios improved in all experimental groups. Subsequently, these shrimps were challenged with Vibrio parahaemolyticus, revealing that paraprobiotic-fed shrimps exhibited significant survival rate improvements. Oxidative stress-related enzyme activities, such as superoxide dismutase and catalase, increased in paraprobiotic-fed shrimps post-Vibrio challenge, while the challenged control group showed decreased activity (p < 0.001). Nitric oxide levels are also increased in paraprobiotic-treated shrimp, with B. coagulans 3 showing a significant rise in nitric oxide activity (p < 0.001). This study further demonstrated the positive impact of paraprobiotic treatment on digestive enzymes, immune-related parameters (e.g., total hemocyte count, prophenoloxidase, and respiratory burst activity), and overall disease resistance. These findings suggest that B. coagulans paraprobiotics have the potential to enhance antioxidant, antibacterial, and immune-related responses in L. vannamei, making them a valuable addition to shrimp aquaculture.
Read full abstract