Development of the embryonic vertebrate heart requires the precise coordination of pattern formation and cell movement. Taking advantage of the availability of zebrafish mutations that disrupt cardiogenesis, several groups have identified key regulators of specific aspects of cardiac patterning and morphogenesis. Several genes, including gata5, fgf8, bmp2b, one-eyed pinhead, and hand2, have been shown to be relevant to the patterning events that regulate myocardial differentiation. Studies of mutants with morphogenetic defects have indicated at least six genes that are essential for cardiac fusion and heart tube assembly, including casanova, bonnie and clyde, gata5, one-eyed pinhead, hand2, miles apart, and heart and soul. Furthermore, analysis of the jekyll gene has indicated its important role during the morphogenesis of the atrioventricular valve. Altogether, these data provide a substantial foundation for future investigations of cardiac patterning, cardiac morphogenesis, and the relationship between these processes.
Read full abstract