The Paleoproterozoic (ca. 1900 Ma) Lynn Lake greenstone belt of northern Manitoba, Canada, has been previously characterized as comprising a series of tectonically juxtaposed intra-oceanic-derived metavolcanic rocks. The results of more recent local and regional studies, however, support a significant contribution of continental crust during formation of the metasedimentary, metavolcanic, and intrusive igneous rocks that comprise the majority of the Lynn Lake greenstone belt. The tectonic model previously proposed for the Lynn Lake greenstone belt, however, did not consider the geodynamics of the Lynn Lake greenstone belt in the context of all available data. In this study, we report the results of outcrop mapping and petrographic analysis, as well as major, minor, and trace element geochemical analyses for 54 samples from the Northern terrane, and integrate and compare the results with data from previously published studies. These data are used to recharacterize the metavolcanic rocks and to develop a new geodynamic model for the formation of the Lynn Lake greenstone belt.Ultramafic to intermediate rocks in the vicinity of the MacLellan Au–Ag deposit are characterized primarily by E-MORB-like trace element characteristics and Th–Nb–La systematics, which are interpreted to be the result of a primary, plume-derived melt interacting with continental lithosphere at a thinned (i.e., rifted) continental margin. Similarly, the majority of the mafic to intermediate rocks that comprise the Lynn Lake greenstone belt are characterized by flat to E-MORB-like trace element patterns and Th–Nb–La systematics, which are consistent with mantle plume-derived, contaminated, oceanic continental rift or rifted margin setting rocks. This study suggests that the metavolcanic rocks of the Lynn Lake greenstone belt were derived via rifting between the Superior and Hearne Cratons, which resulted in the formation and growth of the Manikewan Ocean. Alternatively, the metavolcanic rocks could have been derived from an upwelling plume generated from a back-arc-style subduction zone that formed between the Rae and Hearne Cratons during the closure of the Snowbird Ocean, which resulted in rifting of the passive Hearne margin.
Read full abstract