Introduction: The main objective of the study was to validate the Norwegian translation of the Speech, Spatial and Qualities of Hearing Scale (SSQ) and investigate the SSQ disability profiles in a cochlear implant (CI) user population. Methods: The study involved 152 adult CI users. The mean age at implantation was 55 (standard deviation [SD] = 16), and the mean CI experience was 5 years (SD = 4.8). The cohort was split into three groups depending on the hearing modality: bilateral CIs (BCIs), a unilateral CI (UCI), and bimodal (CI plus contralateral hearing aid; HCI). The SSQ disability profiles of each group were compared with those observed in similar studies using the English version and other translations of the SSQ. Standard values, internal consistency, sensitivity, and floor and ceiling effects were investigated, and the missing-response rates to specific questions were calculated. Relationships to speech perception were measured using monosyllabic word scores and the Norwegian Hearing in Noise Test scores. Results: In the BCI group, the average scores were around 5.0 for the speech and spatial sections and 7.0 for the qualities section (SD ∼2). The average scores of the UCI and HCI groups were about one point lower than those of the BCI group. The SSQ disability profiles were comparable to the profiles in similar studies. The slopes of the linear regression lines measuring the relationships between the SSQ speech and monosyllabic word scores were 0.8 per 10% increase in the monosyllabic word score for the BCI group (explaining 35% of the variation) and 0.4 for the UCI and HCI groups (explaining 22–23% of the variation). Conclusion: The Norwegian version of the SSQ measures hearing disability similar to the original English version, and the internal consistency is good. Differences in the recipients’ pre-implantation variables could explain some variations we observed in the SSQ responses, and such predictors should be investigated. Data aggregation will be possible using the SSQ as a routine clinical assessment in global CI populations. Moreover, pre-implantation variables should be systematically registered so that they can be used in mixed-effects models.