In an era subjected to digital solutions, handwritten signatures continue playing a crucial role in identity verification and document authentication. These signatures, a form of bio-metric verification, are unique to every individual, serving as a primitive method for confirming identity and ensuring security of an individual. Signatures, apart from being a means of personal authentication, are often considered a cornerstone in the validation of critical documents and processes, especially within the healthcare sector. In healthcare missions, particularly in the regions that are underdeveloped, hand-written records persist as the primary mode of documentation. The credibility of these handwritten documents hinges on the authenticity of the accompanying signatures, making signature verification a paramount safeguard for the integrity and security of medical information. Nonetheless, traditional offline methods of signature identification can be time-consuming and inefficient, particularly while dealing with a massive volume of documents. This arises the evident need for automated signature verification systems. Our research introduces an innovative signature verification system which synthesizes the strengths of fuzzy logic and CNN (Convolutional Neural Networks) to deliver precise and efficient signature verification. Leveraging the capabilities of Fuzzy Logic for feature representation and CNNs for discriminative learning, our proposed hybrid model offers a compelling solution. Through rigorous training, spanning a mere 28 epochs, our hybrid model exhibits remarkable performance by attaining a training accuracy of 91.29% and a test accuracy of 88.47%, underscoring its robust generalization capacity. In an era of evolving security requirements and the persistent relevance of handwritten signatures, our research links the disparity between tradition and modernity.