Infant weight patterns predict subsequent weight outcomes. Rapid infant weight gain, defined as a >0.67 increase in weight-for-age z-score (WAZ) between two time points in infancy, increases obesity risk. Higher oxidative stress, an imbalance between antioxidants and reactive oxygen species, has been associated with low birthweight and paradoxically also with later obesity. We hypothesized that prenatal oxidative stress may also be associated with rapid infant weight gain, an early weight pattern associated with future obesity. Within the NYU Children's Health and Environment Study prospective pregnancy cohort, we analyzed associations between prenatal lipid, protein, and DNA urinary oxidative stress biomarkers and infant weight data. Primary outcome was rapid infant weight gain (>0.67 increase in WAZ) between birth and later infancy at the 8 or 12 month visit. Secondary outcomes included: very rapid weight gain (>1.34 increase in WAZ), low (<2500 g) or high (≥4000 g) birthweight, and low (< -1 WAZ) or high (>1 WAZ) 12 month weight. Pregnant participants consented to the postnatal study (n = 541); 425 participants had weight data both at birth and in later infancy. In an adjusted binary model, prenatal 8-iso-PGF2α, a lipid oxidative stress biomarker, was associated with rapid infant weight gain (aOR 1.44; 95% CI: 1.16, 1.78, p = 0.001). In a multinomial model using ≤0.67 change in WAZ as a reference group, 8-iso-PGF2α was associated with rapid infant weight gain (defined as >0.67 but ≤1.34 WAZ; aOR 1.57, 95% CI: 1.19, 2.05, p = 0.001) and very rapid infant weight gain (defined as >1.34 WAZ; aOR 1.33; 95% CI: 1.02, 1.72, p < 0.05) Secondary analyses detected associations between 8-iso-PGF2α and low birthweight outcomes. We found an association between 8-iso-PGF2α, a lipid prenatal oxidative stress biomarker, and rapid infant weight gain, expanding our understanding of the developmental origins of obesity and cardiometabolic disease.
Read full abstract