The recent global outbreaks of infectious diseases such as COVID-19, yellow fever, and Ebola have highlighted the critical need for robust health data management systems that can rapidly adapt to and mitigate public health emergencies. In contrast to traditional systems, this study introduces an innovative blockchain-based Electronic Health Record (EHR) access control mechanism that effectively safeguards patient data integrity and privacy. The proposed approach uniquely integrates granular data access control mechanism within a blockchain framework, ensuring that patient data is only accessible to explicitly authorized users and thereby enhancing patient consent and privacy. This system addresses key challenges in healthcare data management, including preventing unauthorized access and overcoming the inefficiencies inherent in traditional access mechanisms. Since the latency is a sensitive factor in healthcare data management, the simulations of the proposed model reveal substantial improvements over existing benchmarks in terms of reduced computing overhead, increased throughput, minimized latency, and strengthened overall security. By demonstrating these advantages, the study contributes significantly to the evolution of health data management, offering a scalable, secure solution that prioritizes patient autonomy and privacy in an increasingly digital healthcare landscape.
Read full abstract