BackgroundAdiposity is positively associated with risk of some cancer sites and other health conditions in men; however, it is unclear if endogenous hormones play a role in these associations. We examined how body composition, measured from magnetic resonance imaging (MRI) and common measures of adiposity (e.g., body mass index (BMI)), are related to hormone concentrations in men from the UK Biobank study.MethodsUp to 16,237 men with available body composition data (including visceral, subcutaneous, and liver fat, muscle fat infiltration (MFI), lean tissue, and common adiposity measures) and serum hormone measurements (insulin-like growth factor-I (IGF-I), total testosterone, sex hormone-binding globulin (SHBG), and calculated free testosterone) were included. Multivariable-adjusted linear regression models were used to determine the geometric mean hormone and SHBG concentrations across categories of each exposure.ResultsCommon measurements of adiposity were highly correlated with MRI measures of central and total adiposity (r = 0.76–0.91), although correlations with ectopic fat (liver fat and MFI) were lower (r = 0.43–0.54). Most adiposity measurements showed an inverse U- or J-shaped association with circulating IGF-I and free testosterone; however, MFI was linearly inversely associated, and lean tissue volume was positively associated with both IGF-I and free testosterone concentrations. All body composition measures were inversely associated with total testosterone and SHBG concentrations (relative geometric mean difference between Q5 vs. Q1: 20–30%).ConclusionOur results show that common adiposity and most MRI measures of adiposity relate similarly to serum hormone concentrations; however, associations with ectopic fat (particularly MFI) and lean tissue were different.
Read full abstract