This study aims to explore the relationship between healthcare and future education among the rural low-income population, using J City in Guangdong Province as the focal area. Addressing both healthcare and educational concerns, this research seeks to provide insights that can guide policy and support for this demographic. Utilizing big data analysis and deep learning algorithms, a targeted intelligent identification classification model was developed to accurately detect and classify rural low-income individuals. Additionally, a questionnaire survey methodology was employed to separately investigate healthcare and future education dimensions among the identified population. The proposed model achieved a population identification accuracy of 91.93%, surpassing other baseline neural network algorithms by at least 2.65%. Survey results indicated low satisfaction levels in healthcare areas, including medical resource distribution, medication costs, and access to basic medical facilities, with satisfaction rates below 50%. Regarding future education, issues such as tuition burdens, educational opportunity disparities, and accessibility challenges highlighted the concerns of rural low-income families. The high accuracy of the model demonstrates its potential for precise identification and classification of low-income populations. Insights derived from healthcare and education surveys reveal systemic issues affecting satisfaction and accessibility. This research thus provides a valuable foundation for future studies and policy development targeting rural low-income populations in healthcare and education.
Read full abstract