Cardiovascular Disease (CVD) is one of the main causes of death in recent years. To overcome the challenges faced during diagnosing CVD at an early stage, deep learning has been used. With advancements in technology, the clinical practice in the health care industry is likely to transform significantly. To predict CVD, we constructed two models: Dense Belief Network (DB-Net) and Deep Vanilla Recurrent Network (DVR-Net). Proximity Weighted Random Affine Shadow sampling balancing technique is used for balancing the highly imbalanced Heart Disease Health Indicator dataset. SHapley Additive exPlanations exhibits each feature’s contribution. It is used to visualize features contribution to the output of DB-Net and DVR-Net in CVD prediction. Furthermore, 10-Fold Cross Validation is performed for evaluating the proposed models performance. Cross-dataset evaluation is also conducted on proposed models to see how well our proposed models generalize on unseen data. Various evaluation measures are used for assessment of models. The proposed DB-Net outperforms all the base models by achieving an accuracy of 91%, F1-score of 91%, precision of 93%, recall of 89%, and execution time of 1883 s on 30 epochs with batch size 32. The DVR-Net beats the state-of-art models with an accuracy of 90%, F1-score of 90%, precision of 90%, recall of 90%, and execution time of 2853 s on 30 epochs with batch size 32.
Read full abstract