Introduction: Extracellular matrix (ECM) stiffness plays a role in determining cell behavior during development and maintenance of organ function. Polystyrene dishes typically show an elastic modulus of 1 gigaPa, which is far from the elastic modulus of 10 to 15 kiloPa for myocardium. Gelatin, a derivative of collagen, is a major structural scaffolding in the myocardium including the sinoatrial node. Hypothesis: We hypothesized that gelatin hydrogel at varying stiffness serves as a platform to modulate the automaticity of cardiac pacemaker cells. Methods: Freshly isolated neonatal rat ventricular myocytes (NRVMs) were cultured as monolayers on regular, plastic cell culture plate or on 3%, 5%, and 10% gelatin hydrogel that represents a stiffness of 1.3 ± 0.3, 6.4 ± 1.5, and 13.6 ± 3.5 kPa, respectively. All cell culture surface was coated with fibronectin. NRVMs were transduced with Adv-TBX18 or Adv-GFP at day 0 (d0). Results: TBX18-NRVMs showed significantly more spontaneous synchronous contractions on the gelatin hydrogel (22 ± 12, 29 ± 1, 33 ± 9 on 3, 5, or 10% gelatin, respectively) than on plastic (10 ± 11) at d4. Control, GFP-NRVMs showed few spontaneous synchronous contractions regardless of the cell culture platform (3 ± 4, 2 ± 3, 0 ± 0 bpm at 3, 5, 10% gelatin, respectively; 3 ± 7 bpm on plastic, n = 5 to 6 wells/group) at d4. TBX18-NRVMs exhibited significantly more spontaneous synchronous Ca 2+ transients/min on 10% gelatin hydrogel (33 ± 2) than on 3% gelatin hydrogel (9 ± 2) or 5% gelatin hydrogel (19 ± 8) (n = 3, p<0.05) at d8. Immunostaining revealed that Hcn4 protein expression in TBX18-NRVMs was higher on 10% gelatin than on plastic at d2. The percentage of vimentin+ nonmyocytes in TBX18-NRVMs was higher on 10% gelatin (39.5 ± 2.2 %) compared to either on 5% (26.6 ± 1.7%) or on 3% gelatin (27.5 ± 4.2) at d6. Conclusions: Our data indicate that spontaneous and synchronized contractions of TBX18-induced pacemaker cells were significantly higher on gelatin hydrogel with myocardium-like stiffness compared to those grown on plastic culture medium. The data suggest that modulating ECM stiffness may impact the automaticity of cardiac pacemaker tissues, and could serve as a platform to study sinus node dysfunction.