Wide-column NoSQL databases are an important class of NoSQL (Not only SQL) databases which scale horizontally and feature high access performance on sparse tables. With current trends towards big Data Warehouses (DWs), it is attractive to run existing business intelligence/data warehousing applications on higher volumes of data in wide-column NoSQL databases for low latency by mapping multidimensional models to wide-column NoSQL models or using additional SQL add-ons. For examples, applications like retail management can run over integrated data sets stored in big DWs or in the cloud to capture current item-selling trends. Many of these systems also employ Snapshot Isolation (SI) as a concurrency control mechanism to achieve high throughput for read-heavy workloads. SI works well in a DW environment, as analytical queries can now work on (consistent) snapshots and are not impacted by concurrent update jobs performed by online incremental Extract-Transform-Load (ETL) flows that refresh fact/dimension tables. However, the snapshot made available in the DW is often stale, since at the moment when an analytical query is issued, the source updates (e.g. in a remote retail store) may not have been extracted and processed by the ETL process in time due to high input data volume or slow processing speed. This staleness may cause incorrect results for time-critical decision support queries. To address this problem, snapshots which are supposed to be accessed by analytical queries need to be first maintained by corresponding ETL flows to reflect source updates based on given freshness needs. Snapshot maintenance in this work means maintaining the distributed data partitions that are required by a query. Since most NoSQL databases are not ACID compliant and do not provide full-fledged distributed transaction support, snapshot may be inconsistently derived when its data partitions are updated by different ETL maintenance jobs.This paper describes an extended version of HBelt system [1] which tightly integrates the wide-column NoSQL database HBase with a clustered & pipelined ETL engine. Our objective is to efficiently refresh HBase tables with remote source updates while a consistent snapshot is guaranteed across distributed partitions for each scan request in analytical queries. A consistency model is defined and implemented to address so-called distributed snapshot maintenance. To achieve this, ETL jobs and analytical queries are scheduled in a distributed processing environment. In addition, a partitioned, incremental ETL pipeline is introduced to increase the performance of ETL (update) jobs. We validate the efficiency gain in terms of data pipelining and data partitioning using the TPC-DS benchmark, which simulates a modern decision support system for a retail product supplier. Experimental results show that high query throughput can be achieved in HBelt when distributed, refreshed snapshots are demanded.