Silica nanoparticles (SiNPs) have emerged as a multipurpose solution with wide-ranging applications in various industries such as medicine, agriculture, construction, cosmetics, and food production. In 1961, Stöber introduced a ground-breaking sol-gel method for synthesizing SiNPs, which carried a new era of exploration both in academia and industry, uncovering numerous possibilities for these simple yet multifaceted particles. Inspite of numerous reported literature with wide applicability, the synthesis of these nanoparticles with the desired size and functionalities poses considerable challenges. Over time, researchers have strived to optimize the synthetic route, particularly by developing greener approaches that minimize environmental impact. By reducing hazardous chemicals, energy consumption, and waste generation, these greener synthesis methods have become an important focus in the field. This review aims to provide a comprehensive analysis of the various synthetic approaches available for different types of SiNPs. Starting from the Stöber' method, we analyze other methods as well to synthesis different types of SiNPs including mesoporous, core-shell and functionalized nanoparticles. With increasing concerns with the chemical methods associated for environmental issues, we aim to assist readers in identifying suitable greener synthesis methods tailored to their specific requirements. By highlighting the advancements in reaction time optimization, waste reduction, and environmentally friendly precursors, we offer insights into the latest techniques that contribute to greener and more sustainable SiNPs synthesis. Additionally, we briefly discuss the diverse applications of SiNPs, demonstrating their relevance and potential impact in fields such as medicine, agriculture, and cosmetics. By emphasizing the greener synthesis methods and economical aspects, this review aims to inspire researchers and industry professionals to adopt environmentally conscious practices while harnessing the immense capabilities of SiNPs.
Read full abstract