The fractional-slot, concentrated-winding, interior permanent magnet synchronous motor (FSCW IPMSM) has advantages, such as reducing motor copper consumption, improving flux-weakening capability, and motor fault tolerance, and has certain development potential in application fields such as electric vehicles. However, fractional-slot concentrated-winding motors often contain rich harmonic components due to their winding characteristics, leading to increased motor losses and back electromotive force harmonics, thereby affecting the efficiency and constant power speed regulation range of the motor. Based on this, this article first uses the winding function method to explore the inductance and saliency ratio of the interior permanent magnet synchronous motor with different slot pole combinations in the fractional-slot concentrated- winding of electric vehicles. Secondly, this article will establish a 2D finite element parameterized model to analyze and compare the performance of fractional-slot concentrated-winding motors with different slot pole combinations, including air gap magnetic density, back electromotive force distortion rate, overload multiple, and torque. The structural parameters of the motor were optimized with the objective of minimizing the torque ripple under the constraint of minimizing the average torque reduction. The motor slot width, permanent magnet angle, and permanent magnet pole arc angle were analyzed and optimized. The simulation results showed that 12 slots and 8 poles were the optimal design schemes, providing a theoretical basis for the selection of slot pole coordination in the fractional-slot concentrated-winding interior permanent magnet synchronous motor for electric vehicles.
Read full abstract