The expressed Ab repertoire is a critical determinant of immune-related phenotypes. Ab-encoding transcripts are distinct from other expressed genes because they are transcribed from somatically rearranged gene segments. Human Abs are composed of two identical H and L chain polypeptides derived from genes in IGH locus and one of two L chain loci. The combinatorial diversity that results from Ab gene rearrangement and the pairing of different H and L chains contributes to the immense diversity of the baseline Ab repertoire. During rearrangement, Ab gene selection is mediated by factors that influence chromatin architecture, promoter/enhancer activity, and V(D)J recombination. Interindividual variation in the composition of the Ab repertoire associates with germline variation in IGH, implicating polymorphism in Ab gene regulation. Determining how IGH variants directly mediate gene regulation will require integration of these variants with other functional genomic datasets. In this study, we argue that standard approaches using short reads have limited utility for characterizing regulatory regions in IGH at haplotype resolution. Using simulated and chromatin immunoprecipitation sequencing reads, we define features of IGH that limit use of short reads and a single reference genome, namely 1) the highly duplicated nature of the DNA sequence in IGH and 2) structural polymorphisms that are frequent in the population. We demonstrate that personalized diploid references enhance performance of short-read data for characterizing mappable portions of the locus, while also showing that long-read profiling tools will ultimately be needed to fully resolve functional impacts of IGH germline variation on expressed Ab repertoires.