ABSTRACT Wrist and hand biomechanics under full-body load are not fully understood. To identify potential anatomy-related differences in hand loading, 15 former collegiate athletes completed a 45-second handstand on a novel emed® pressure platform system. Center of pressure (CoP) and force distribution across the palmar surface were analysed during the stabilised phase. Maximum force, mean pressure, and contact area were calculated in four palmar anatomic subregions: hypothenar, thenar, metacarpals, and fingers. These values were related to ulnar variance measurements obtained from a participant handstand hold in a weight-bearing computed tomography machine. About 93% of participants shifted their CoP towards their dominant hand (p < 0.001), and among all participants, the dominant hand applied an average of 8.91% (p = 0.002) higher maximum force than the nondominant hand. The proportion of total mean force was highest in the hypothenar (47.1%) and thenar regions (36.5%). Every 1.00 mm increase in ulnar variance corresponded to a 2.8% increase in maximum force in the hypothenar region (p = 0.037). This investigation emphasises the role of gymnastics hand dominance on left/right hand weight distribution and the importance of the hypothenar zone in distributing pressure during handstands. It also indicates that force transmission through the wrist to the palm is contingent on radioulnar positioning.