Polyurethane incorporated with nanofillers such as carbon nanotubes, basalt fibers, and clay nanoparticles has presented remarkable potential for improving the performance of the polymeric composites. In this study, the halloysite nanofiller-reinforced polyurethane elastomer composites were prepared via the semi-prepolymer method. The impact of different halloysites (halloysite nanotubes and halloysite nanoplates) in polyurethane composites was investigated. Scanning electron microscopy, X-ray diffraction, infrared spectroscopy, electronic universal tensile testing, and acoustic impedance tube testing were employed to characterize the morphology, composition, phase separation, mechanical properties, and sound insulation of the samples. The composite fabricated with 0.5 wt% of halloysite nanotubes introduced during quasi-prepolymer preparation exhibited the highest tensile strength (22.92 ± 0.84 MPa) and elongation at break (576.67 ± 17.99%) among all the prepared samples. Also, the incorporation of 2 wt% halloysite nanotubes into the polyurethane matrix resulted in the most significant overall improvements, particularly in terms of tensile strength (~44%), elongation at break (~40%), and sound insulation (~25%) within the low-frequency range of 50 to 1600 Hz. The attainment of these impressive mechanical and acoustic characteristics could be attributed to the unique lumen structure of the halloysite nanotubes, good dispersion of the halloysites in the polyurethane, and the interfacial bonding between the matrix and halloysite fillers.