When running in idle condition, the vehicle has no speeds and road excitation, and the engine vertical self-vibration is the main excitation source. In this paper, a five-degree-of-freedom half-vehicle suspension model with double-delay feedback control is proposed to improve the vibration performance in idle condition. First, according to the system amplitude–frequency characteristic, the multiobjective function combining the vehicle body acceleration and pitching angular acceleration is established. Then, utilizing particle swarm optimization in optimizing and analyzing, the optimal feedback gains and time delays of the suspension system are obtained. Subsequently, a new frequency scanning method is utilized to analyze the stability of the controlled suspension system with the optimal feedback parameters. Finally, numerical simulations in the Matlab/Simulink environment are conducted to validate the performance of time-delay reducing vibration control on different engine feedback condition. Simulation results indicate that the active suspension with time-delay feedback control based on engine acceleration has better reducing vibration performance, and the root mean square of vehicle body and pitching angular acceleration are, respectively, reduced 87.37 and 80.01% than that without time delay. The research on vehicle suspension system with time-delay feedback control can improve the vibration performance effectively compared to the conventional one.