BackgroundOvarian cancer (OC) is a huge burden on women’s lives. Recently, the implication of long non-coding RNAs (lncRNAs) in cancers, including OC, has aroused much attention. The objective of this study was to explore the role and functional mechanism of lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) in OC.MethodsThe expression of DLX6-AS1, miR-195-5p, and four and a half LIM domains protein 2 (FHL2) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell proliferation, apoptosis, migration, and invasion were assessed by cell count kit 8 (CCK-8), flow cytometry and transwell assays, respectively. The protein levels of proliferating cell nuclear antigen (PCNA), cleaved-caspase-3 (C-caspase 3), N-cadherin, Vimentin, E-cadherin and FHL2 were quantified by western blot. The relationship between miR-195-5p and DLX6-AS1 or FHL2 was predicted by bioinformatics tool starBase and verified by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft tumor model was established to observe the role of DLX6-AS1 in vivo.ResultsDLX6-AS1 and FHL2 were up-regulated in OC tissues and cells, while miR-195-5p was down-regulated. DLX6-AS1 knockdown inhibited proliferation, migration, and invasion but induced apoptosis of OC cells. However, miR-195-5p inhibition reversed these effects. Overexpression of miR-195-5p also depleted proliferation, migration, and invasion but promoted apoptosis of OC cells, while FHL2 overexpression overturned these influences. DLX6-AS1 knockdown blocked tumor growth in vivo.ConclusionDLX6-AS1, as an oncogene in OC, accelerated tumor progression by up-regulating FHL2 via mediating miR-195-5p, suggesting that DLX6-AS1 was a hopeful target for the lncRNA-targeted therapy in OC.