The incidence of human infection by zoonotic avian influenza viruses, especially H5N1 and H7N9 viruses, has increased. Current zoonotic H7N9 avian influenza viruses (identified since 2013) emerged during reassortment of viruses belonging to different subtypes. Despite analyses of their genetic background, we do not know why current H7N9 viruses are zoonotic. Therefore, there is a need to identify the factor(s) responsible for the extended host tropism that enables these viruses to infect humans as well as birds. To identify H7N9-specific amino acids that confer zoonotic properties on H7N9 viruses, we performed multiple alignment of the hemagglutinin (HA) amino acid sequences of A/Shanghai/1/2013 (H7N9) and A/duck/Zhejiang/12/2011(H7N3) (a putative, non- or less zoonotic HA donor to the zoonotic H7N9 virus). We also analyze the function of an H7N9 HA-specific amino acid with respect to HA acid stability, and evaluated the effect of acid stability on viral infectivity and virulence in a mouse model. HA2-116D, preserved in current zoonotic H7N9 viruses, was crucial for loss of HA acid stability. The acid-labile HA protein in H7 viruses played an important role in infection of human airway epithelial cells; HA2-116D contributed to infection and replication of H7 viruses. Finally, HA2-116D served as a H7 virulence factor in mice. These results suggest that acid-labile HA harboring HA2-116D confers zoonotic characteristics on H7N9 virus and that future novel zoonotic avian viruses could emerge from non-zoonotic H7 viruses via acquisition of mutations that remove HA acid stability.