Soluble Aβ1-42 oligomers (AβO) are formed in the early stages of Alzheimer's disease (AD) and were previously shown to trigger enhanced Ca2+ levels and mitochondrial dysfunction via the activation of N-methyl-D-aspartate receptors (NMDAR). Src kinase is a ubiquitous redox-sensitive non-receptor tyrosine kinase involved in the regulation of several cellular processes, which was demonstrated to have a reciprocal interaction towards NMDAR activation. However, little is known about the early-stage mechanisms associated with AβO-induced neurodysfunction involving Src. Thus, in this work, we analysed the influence of brief exposure to oligomeric Aβ1-42 on Src activation and related mechanisms involving mitochondria and redox changes in mature primary rat hippocampal neurons. Data show that brief exposure to AβO induce H2O2-dependent Src activation involving different cellular events, including NMDAR activation and mediated intracellular Ca2+ rise, enhanced cytosolic and subsequent mitochondrial H2O2 levels, accompanied by mild mitochondrial fragmentation. Interestingly, these effects were prevented by Src inhibition, suggesting a feedforward modulation. The current study supports a relevant role for Src kinase activation in promoting the loss of postsynaptic glutamatergic synapse homeostasis involving cytosolic and mitochondrial ROS generation after brief exposure to AβO. Therefore, restoring Src activity can constitute a protective strategy for mitochondria and related hippocampal glutamatergic synapses.