Silver nanoparticles (AgNP) and polystyrene (PS) plastics have been broadly utilized in various field, e.g., food storage, packaging materials, and medical therapies. However, investigation on the potential biotoxicity induced by the co-exposure to AgNP and PS plastics remains understudied. Thus, we performed this study to examine the toxicological profile of the co-exposure to AgNP and PS in mice. Biochemical and microbial characterizations were performed in mice receiving 90-day oral gavage feeding to examine the hepatotoxicity, neurotoxicity, inflammatory responses, gut microbial alterations. It has been found that the presence of plastic particles aggravates the toxicity of silver nanoparticle materials. Regardless of the plastic type and size, energy and choline metabolisms will be altered by the co-exposures. Moreover, microplastics may induce cell damage by modulating fatty acid peroxidation in unison with stimulating inflammatory responses. Due to the smaller size of nanoplastics, they may pass through blood-brain barrier to induce neuronal damage and increase vascular risks. Changes in the microbial functional abundances are sensitive to the microplastics doses. These results support the necessity of reducing the co-exposure between AgNP and multiscale plastics, and advocate further developments of biodegradable package materials to improve food safety.
Read full abstract