The effects of enhanced late INa, a persistent component of the Na+ channel current, on the intracellular ion dynamics and the automaticity of the pulmonary vein cardiomyocytes were studied with fluorescent microscopy. Anemonia viridis toxin II (ATX- II), an enhancer of late INa, caused increases in the basal Na+ and Ca2+ concentrations, increases in the number of Ca2+ sparks and Ca2+ waves, and the generation of repetitive Ca2+ transients. These phenomena were inhibited by eleclazine, a blocker of the late INa; SEA0400, an inhibitor of the Na+/Ca2+ exchanger (NCX); H89, a protein kinase A (PKA) inhibitor; and KN-93, a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results suggest that enhancement of late INa in the pulmonary vein cardiomyocytes causes disturbance of the intracellular ion environment through activation of the NCX and Ca2+-dependent enzymes. Such mechanisms are probably involved in the ectopic electrical activity of the pulmonary vein myocardium.
Read full abstract