Alterations in the microbiota composition, or ecological dysbiosis, have been implicated in the development of various diseases, including allergic diseases and asthma. Examining the relationship between microbiota alterations in the host and cough variant asthma (CVA) may facilitate the discovery of novel therapeutic strategies. To elucidate the diversity and difference of microbiota across three ecological niches, we performed 16S rDNA amplicon sequencing on lung, ileum, and colon samples. We assessed the levels of interleukin-12 (IL-12) and interleukin-13 (IL-13) in guinea pig bronchoalveolar lavage fluid using the enzyme-linked immunosorbent assay (ELISA). We applied Spearman's analytical method to evaluate the correlation between microbiota and cytokines. The results demonstrated that the relative abundance, α-diversity, and β-diversity of the microbial composition of the lung, ileum, and colon varied considerably. The ELISA results indicated a substantial increase in the level of IL-13 and a decreasing trend in the level of IL-12 in the CVA guinea pigs. The Spearman analysis identified a correlation between Mycoplasma, Faecalibaculum, and Ruminococcus and the inflammatory factors in the CVA guinea pigs. Our guinea pig model showed that core microorganisms, such as Mycoplasma in the lung, Faecalibaculum in the ileum, and Ruminococcus in the colon, may play a crucial role in the pathogenesis of CVA. The most conspicuous changes in the ecological niche were observed in the guinea pig ileum, followed by the lung, while relatively minor changes were observed in the colon. Notably, the microbial structure of the ileum niche approximated that of the colon niche. Therefore, the results of this study suggest that CVA development is closely related to the dysregulation of ileal, lung, and colon microbiota and the ensuing inflammatory changes in the lung.
Read full abstract