During scene viewing, semantic information in the scene has been shown to play a dominant role in guiding fixations compared to visual salience (e.g., Henderson & Hayes, 2017). However, scene viewing is sometimes disrupted by cognitive processes unrelated to the scene. For example, viewers sometimes engage in mind-wandering, or having thoughts unrelated to the current task. How do meaning and visual salience account for fixation allocation when the viewer is mind-wandering, and does it differ from when the viewer is on-task? We asked participants to study a series of real-world scenes in preparation for a later memory test. Thought probes occasionally occurred after a subset of scenes to assess whether participants were on-task or mind-wandering. We used salience maps (Graph-Based Visual Saliency; Harel, Koch, & Perona, 2007) and meaning maps (Henderson & Hayes, 2017) to represent the distribution of visual salience and semantic richness in the scene, respectively. Because visual salience and meaning were represented similarly, we could directly compare how well they predicted fixation allocation. Our results indicate that fixations prioritized meaningful over visually salient regions in the scene during mind-wandering just as during attentive viewing. These results held across the entire viewing time. A re-analysis of an independent study (Krasich, Huffman, Faber, & Brockmole Journal of Vision, 20(9), 10, 2020) showed similar results. Therefore, viewers appear to prioritize meaningful regions over visually salient regions in real-world scenes even during mind-wandering.
Read full abstract