The primary regulators of Rho GTPases are GTPase-activating protein (GAP), guanine nucleotide exchange factor (GEF), and GDP dissociation inhibitor (GDI), which function as signaling switches in several physiological processes involved in plant growth and development. This study compared how the Rho GTPase regulators functioned in seven Rosaceae species. Seven Rosaceae species, divided into three subgroups, had a total of 177 regulators of Rho GTPases. According to duplication analysis, the expansion of GEF, GAP, and GDI families was facilitated by whole genome duplication or a dispersed duplication event. The balance of cellulose deposition to control the growth of the pear pollen tube, as demonstrated by the expression profile and antisense oligonucleotide approach. Moreover, protein-protein interactions indicated that PbrGDI1 and PbrROP1 could directly interact, suggesting that PbrGDI1 regulated the growth of the pear pollen tube through PbrROP1 signaling downstream. These results lay the foundations for future functional characterization of the GAP, GEF, and GDI gene families in Pyrus bretschneideri.