Fractal assembly technology enables scalable construction of organic crystal patterns for emerging nanoelectronics and optoelectronics. Here, a polymer-templating assembly strategy is presented for centimeter-scale patterned growth of fractal organic crystals (FOCs). These structures are formed by drop-coating perylene solution directly onto a gelatin-modified surface, resulting in the formation of crisscross fractal patterns. By adjusting the tilt angle of the template, the morphology of FOCs can be effectively controlled, with the diameter distribution of each level branch ranging from hundreds to ten micrometers. The planar FOC device exhibits flexible photoreception and photosynaptic capabilities, with a high specific detectivity of 1.35×109 Jones and paired-pulse facilitation (PPF) index of 104%, withstanding a 0.5cm bending radius during bending test. These findings present a reliable route for large-scale assembly of flexible organic crystalline materials toward neuromorphic electronics.